fighting and henceforward were called Bhuinhārs. Another local legend declares that at a great sacrifice offered by Jarásandha, king of Magadha, a sufcient number of Brâhmans could not be obtained, and the Diwan therefore palmed off some men of the lower castes as genuine Bräbmans. The Brähmans thus manufactured, failing to gain admission into their supposed caste, had to set up a caste of their own, the name of which (Babbhan or Bähman) is popularly supposed to mean a sham Brähman. This tradition, it need scarcely be said, is not recognized by the Babhans themselves, and like the other legends, it has clearly been invented to explain the claim of the Bäbhans to be Brähmans.

In the estimation of the general Hindu public, they now constitute a separate easte, and their degradation probably dates back to the time when Buddhism was overthrone. It has been pointed out that Bäbhan is merely the Pâli form of Brähman, and that the word is often found in Asoka's edicts. It has therefore been conjectured that those now known as Babhans remain Buddhists after the Brāhmans around them had reverted to Hinduism, and so the Pali name continued to be applied them; while the synonym Bhuinhār or Bbumihâraka is explained as referring to their having seized the lands attached to the old Buddhist monasteries. This theory is borne out by the Brahmanical titles of Misr, Pãnre and Tewäri which are used along with the Räjput titles of Singb, Rai and Thạkur; and by the fact that in this Province, they are pract tically confined to the area oovered by the ancient empire of Magadha, which long remained the centre of Buddhism.
Koiris. The Koiris call for only a brief notice. They are skilful and industrious cultivatore, who are the best tenants to bo found in the district. They are a purely agricultural ca te, who alsa work as market-gardeners and rear such crops as vegetablus, chillies, potatoes and poppy ; they are proud of their position as adroit cultivators, and are indefatigable field-workers.
Bhuigis. The Bhuiyás of Gaya are an offishoot of the large Dravidian tribe of Bhuiyas which still numbers nearly two-thirls of a million. They appear to have come originally from the Tributary States of Chotā Nagpur and Orissa, where the organization of the tribe at the present day is more complete than elsewhere. In this district they fell under the domination of people stronger than themse'ves, and found their level as landlees labour rs working
in the fillds. Cut off gengraphically from the original nuelens of the tribe, and socially degraded on account of their unclean habift of food, they are now one of the lowest of all the eastes, but treasure among themselves the old tribal name of Bhuiya.

The physical charact ristics and the traditions of the Bhuiyals vary considerably in different places, but they all affect great reverence for the memory of Rikhmun or Rikhiassan, whom they: regard, some as a putron deity, and others as a mythical ancestor, whose name distinguishcs one of the divisions of the tribe. It seems Iribable that in the earliest stage of belief Rikhmun was the bear-totem of a sept of the tribe, and that later on he was transformed into an ancestral hero, and finally promoted to the rank of a tribal god. However this may be, his oult is peculiap to the Bhuiyãs, and serves to link together the scattered branohes of the tribe. Here in Gaya, the Bhuiyĩs claim deseent from Rikhiâpan, or Rukbminia as they call him, and two legends are cursent to explain the name of the caste. One relates that Rukbminia brought the land (ohumi) under the plough near the Dhaulagiri mountain, and that he and his descendants were consequently called Bhuiyàs, thongh members of the caste also style themselves Rikhiásans. The other is that an embankment having been bresehed by a flood, no one was able to repair it and save the crops from destruction, until Rukhminia came with his four brothers and rebuilt it in a single night. This act gave him the name of Bhuiyã or savisar of the land-a designation which was not regarded as in any way disparaging until a river god managed to get the Bhniyas to eat the flesh of an uvclean beast in rovenge for the repair of the embankment. Thenceforward Rikbiâsan and his descendants were a despised and degraded race. Other legends relating the canse of their fall to their present low position are common in Gayâ, e.g., that they were created by Mabadeo to do the work of menials, and that onee upon a time a dead body baving to be removed from Mahādeo's house, no one but the descendants of Rulhminia would obey his orders and carry it out. All the legends however point to the Bhuiyãs having been a great cultivating easte whioh beeame degraded on account of their uncieanly habits and manners.

The Rājputs of Gaya, like the Babhans, generally follow Rujputs. - agricultural pursuits. They were prob bly among the earliest.

Aryan settlers in the district, which they wrested from the aboriginal tribes which had hitherto held it. They generally observe the same forms of worship as orthodox Hindus of good caste, but pay especial honour to Devì, a reverence explained by a legend about the special favour she showed to a Rajjput, Jagat Deo Singh. When he was in attendance before the king at Delhi, Devi appeared as a woman dressed in sorry ragged raiment, and informed the king that only Jagat Deo could present her with suitable olothing. The king said be would give double what Jagat Deo did, and Devī thereupon put his and Jagat Deo's devotion to the test, by ordering Jagat Deo's head to be cut off. This having been done, she asked for the head of the king's son, which the king refused, and she then restored Jagat Deo to life.
Kahărs. bearers, household servants and labourers. According to tradition, field-labour is their hereditary calling. The legend is that king Jarǎkandba built a tower, close to which was a garden at Giriak on the northern border of the district : this tower, which is still known as Jarásandha's baithak, has been identified by General Canningham as a Buddhist stūpa erected over a goose in the monastery of Hansa Sanghärāma. The garden was nearly destroyed by dronght, and Jaräsandha offered the hand of his danghter and half his kingdom to any one who watered it in a single night from the Ganges. The chief of the Kahârs undertook the task, built a great embankment, and lifted the water by swingbaskets from the Bâwan Ganga, a rivulet running at its foot. The work was all but done, and Jarāsandha was in despair at having to marry his daughter to a Kahär, when the pipal-tree came to his rescue and, assuming the form of a cook, crowel loudly. The Kaharrs, thinking it was morning, fled at once, leaving their tark unfinished, in fear of the king taking vengeance on them for presuming to seek an alliance with him. The king, however, gave them their wages, $3 \$$ seers of food, and that amount has ever since been the Kahâr's daily wage.
Doaidhs.
The Dosidhs also support themselves by labour and cultivation, but many of them are notorious thieves, and as a community they are reckoned among the criminal elasses of the district. They are, as a rule, of a low type and appear to have traces of an aboriginal descent. The main features of their worship are the
sacrifice of pigs and the libation of liquor, and their ceremonies generally terminate in a drunken feast on swine's flcsh. Like the Dosidhs and Dhangars of Northern India, they observe a ourious ceremony in honour of Rahu, the demon of eclipse. A long shallow trench is dug outside the village, and the officiating Dosadh, called the blagat, sleeps in a hut elose by on the night before the ceremony. Near the trench two long bamboo poles are erected with two swords fastened, edge downwards, acriss - them. The trench is filled with mango wood, over which ght is sprinkled, and the wood is then burnt. When the flames have burnt down, the bhagat passes over the live embers followed by the assembled people. This passing through the fire is regarded as a Kínd of exorcism ; only those who are possessed by an evil spinit are affected by the fire, and any burn is a sign of their deliveranco from demoniacal possession. Near the trench is a pot foll of k hir (riee boiled in milk), which when boiling must be stirred by the bare hand of the bhagat. The latter mounts the swords, and sacrifices a boar and a pig, the flesh of which is then devoured by the worshippers together with the khir. The remnant, if any, is burned before the next sunrise. This ceremony is generally performed in Mägh (January-February), bat it is not necessarily periodical, as it is resorted to in order to obtain deliverance from any illness or trouble.

CHAPTER VII.

PUBLIC HEALTH.

Vital statietics.

A comparison of vital statistics for any but recent periods is rerdered impossible by the changes in the system of registering births and deaths which hive taken place from time to time. In 1869 the duty of reporting deaths was imposed on the village chaukidirs, and in 1876 the system was extended to births; but the returns received were so incomplete that they were soon discontinued, and, except in towns, deaths alone were registered until 1892, when the collection of statistics of births as well as of deaths was ordered, and the system now in vogue was introduced.

So far as they can be accepted, and they are sufficientiy accurate for the purpose of calculating the approximate growth of the population and of showing the relative healthiness or unhealthiness of different years, the returns submitted since that year show that during the nine years ending in 1900 conditions were generally unfavourable. During the earlier years fever was very prevalent, and twice (once in 1892 and again in 1894) the number of reported deaths exceeded that of the births. Later on the ravages of disease were not so severe, but in 1897 the outbreak of cholera again caused the deaths to exoeed the births. Taken as a whole, the births during this period exceeded the reported deaths by about 60,000 . In six of these nine years the death-rate exceeded 30 per mille, and in 1894 the ratio was as high as $47 \cdot 24$ per mille, the highest percentage ever rceorded in this district. On the other hand, the birth-rate, though it never fell below 30 per mille, never rose above 40 per mille, except in the two last years, when it reached the high percentages of 50 and 48 per thousand. Since 1900, owing to the opening of new lines of railway and the comparative prosperity which has resulted, the
population has been far more progressive, in spite of the terrible visitations of plague to which it has been subject; and the inorease in births has been very marked, tite ratio ranging from $42 \cdot 6$ to 51 per mille ; the latter figure, which was reached in 1904, represents a higher birth-rate than any previously recorded in Gaya. The execss of births over deaths in these 4 years has been nearly 86,000 and would indeed have been still greater, had not the number of the latter been swelled by the unusual mortality of 1901, when the death-rate rose to $45 \cdot 68$ per mille. This increase in the number of births is all the more notio rable, as the deathrate in the quinquennium $1900-04$ was 37 per mille as compared with 32 per mille in the previous 5 years.

According to the returns submitted year by year, by far the greatest mortality is due to fever, but the ignorant chankidär responsible for the returns is far from being a medizal expert.

Parscieicio DISEABKS.

Fever. Drawn as be often is from the lowest dregs of the people, he can diagnose only a few well-known diseases like cholera and small-pox, and many others are indiscriminately elass \mathbf{d} under tho general head of fever. It may, however, safely be assumed that when the morality ascribed to fever is unusually high, the greater part of the excess is due to malarial affections, and it is noticeable that in seven out of the last ten years the average mortality from fever in the district has exceeded that for the Province as a whole. Year by year the number of deaths from fever varies between 40,000 and 60,000 , and it has been known to rise to over 70,000 . This occurred in the anhealihy year of $189 \downarrow$, when fever accounted for a mortality of 33.52 per mille ; and only once in the decade (in 1898) has the death-rate fallen below 20 per mille. Regarding the types of fever prevalent the Civil Surgeon, Major C. E. Sunder, 1.м.s., writes :-"The commonest type of fever in this district is what for want of a bettir name has been called 'simple continued', and which the writer believes to be due to the vicissitudes of temperature occurring in the district, to which the heat mechanism of the body is unable to accommodate itelf, and it is therefore thrown out of gear. Malaria accounts for aboat 33 per cent, of all the fevers. This figure is based upon microscopieal examination of the blond in about 200 cases, and must be acoepted with reserve. When found the malarial organism is usually the ' benign tertian,' in two generations causing a quotidian, and
not a true tertian ague. The 'malignant tertian ' is uncommon, and the quartan parasite is rarely fonnd. Almost all the other - specific fevers occur in Gayã, bitt the only one that calls for notice is typhoid which certainly does occur among natives, as has been verified clinically and by post nortem. Of the eruptive fevers measles is exceedingly common, and chicken-pox and small-pox come next. Typhus has not been seen."

Bubonic plague first appeared in epidemic form in the distriet in October 1900. It broke out in the town of Gayā, but subsequently spread over almost the whole of the district, and continued its ravages up to May 1901. The mortality during this period was appalling; and though the returns show that only 1,133 deaths were due to plague in 1900 and 10,790 deaths in 1901, there is no doubt that mush of the mortality reported as due to fever was really caused by plague. The deaths ascrited to the Jatter disease suddenly increased by 11,000 in 1901 and as suddenly dropped by 22,500 next year -a most suspicious variation ; and it is reported that the actual number of deaths cansed by plague in these eight months was over 26,000 . Since then plague has been an annual visitation, though there has not been such heavy mortality as during the first epidemic: Some sporadie cases appeared in 1902, and in the next year the disease recurred with great severity, the total number of deaths aggregating 1,009 in spite of the immunity of the distriet during the months June to October. There was then a recrudescence of the disease, and the epidemic continuing to prevail until late in the yar, the mortality rose in 1904 to nearly 7,000 . It raged with even greater virulence in the beginning of 1905 , in the first three months of which it account d for over 10,000 deaths, the severity of the epidemic being aggravated by unusual cold and storms in January and February.

Throughout these years the disease has pursued a regular course, decreasing or disappearing entirely in the bot and rainy weather months, reappearing after the rains, and reaching its olimax in the cold weather. In his report for 1904 the Civil Surgeon states:-" Plague may now be considered as baving become endemic. The outbreak that legan in November 1908 lasted well into the year under report, and cases continued to occur until the hot days of April. It now appears always to be at its worst in the
cold months, and directly it appears in the fown, an exodus of the poople takes place, which spreads the disease still further. Even stricken patients are carried away in the exolus. Disinfection, dessication and evacuation are adopted, hut the first can seldom be done thoroughly on account of the opposition, the second seems of as little use, and the last, while saving the individual in the present, does nothing to obviate reinfection in the futare."

To this it should be added that inoculation has fonnd more favour amang the people of Gayí than anywhere else in Bengal, and especially during the first epidemic in the cold weather of 1900-01. At first they were doubtful of its value, butafter its effects had been experienced, they came forward with great readiness to be inoculatod by the Civil Surgeon and the traind medical officers deputed for the purpose, and during this epidemic some 23,000 persons were inoculated of their own free will. Tbese operations afforded striking evidence of the value of the measure as a preventive of plague. In Gayá town some 3,716 persons were inoeulated up to the 31 st March 1901 ; of these, 31 fwere subsequently attacked by plague, but only 4 persons died, and three of these died within 10 days after inoculation, i.e., they may have had the disease before inoculation, as the plague germ is supposed to incubate for 8 or 10 days, so that a person may not develop signs of the discase till after that period. Among the uninoculated inhabitants of the towns about 2.8 per cent. were attacked and 2.7 per cent. died ; and taking all cases of suspectel fever as well as admitted plague, 8.3 per cent. were attacked and 8.2 per cent. diel, whereas among the inoculated 1.2 per cent. were attacked and 0.2 per cent. died. In other, words, taking only eases admitted to be plague, the proportion of deaths among the uninoculated was 14 times as great as among the inoculated; and taking all deaths from suspected fever as well, the greater part of which were undoubtedly eaused by plague, we find that the proportion of deaths among the uninoculated was 41 times greater than among those protected by inoculation. In the distriet as a whole, thera were 42 eases, so far as authentic information can be oitained, in which those who had been inoculated died, and only one person-and that a doubtful case of plague-died after the 10 days' period : in the case of the uninoculated most of those who were attacked died. The readiness with which the peoplo took to
inoculation was almost entirely due to the popularity of the local officers and the wholesome influence they exercised; and though the striking results attained during the first epidemie have not been repeated, inoculation still continues to be more popular than elsewhere in the Province; in $190 \downarrow$ the nu mber inoculated (840) was as great as in all the other Bengal districts.

Other disesses.

After fever and plague, the greatest mortality is caused by cholera, which appears in epidemic form at times and carries off large numbers of the people. During the last decade it has raged with especial virulence every three years, causing a mortality of 7.64 per mille in 1894 , of 3 per mille in 1897 , of $5 \cdot 79$ per mille in 1900 , and of $2 \cdot 76$ per mille in 1903. Small-pox also visits the district every year, but its ravages are not very severe, the deathrate due to it only exceeding 1 per mille in 1897 and 1902. Dysentery and diarrhacea are fairly common, but the only diseases specially preralent in the district are catiract, stone, hydrocele and lymph serotum, as well as other reputed filarial diseases. An enquiry has been made with the object of testing the interesting hypothesis that the prevalence of stone is due to a deficiency of salt in the diet of the people ; and though there api ears to be no doubt that common salt is deficient in their usual diet as judged by ordinary physiological standard diets, the data obtained were insufficient to establish any definite conclusions. In the opinion, however, of the Civil Surgeon it seems beyond dispute that hard water and an excersively dry climate are potent factors in the etiology of lithiasis. Similarly, the glare and dust accompanying the hot dry climate of Gaya predispose to cataraet, and blindness is unusually oommon, the proportion of persons afllicted being 145 per 100,000 among males and 188 per 100,000 among females. The number of persons suffering from elephantiasis is also great, and in Gayã town particularly it is a common sight to see numbers both of meo and women walking about the streets with enopmously swollen legs and feet. Lepers are also unusually common, and at the census of 1901 it was found that leprosy was more frequent than in any other Bihair district, 102 per 100,000 males and 36 per 100,000 females being lepers The great disproportion is Trobably due mainly to the faet that male lepers travel further from their homes and leave their homes in greater numbers in order to beg at Gaya, where a long string of men in all stages of
this loathsome disense may be seen on the way to the Vishnupad temple imploring the charity of the passers-by.

Outside the municipalities proper methods of sanitation are almost unknown, in spite of the measures taken by the District Board to clear rank undergrowth, fill up unhealthy hollows and sweep selected villages. The tendency of the people is towards aggregation, und instead of living in hamlets, each nestling within its own belt of trees, as in Bengal, they cluster in elosely-packed villages, usually consisting of a main street with narrow and ill-ventilated side lane3. The sanitary conditions are extremely primitive, while the apathy of the people and the unwholesome habits to which they are rooted render the task of village sanitation on any appreciable seale most difficult. Within munieipal areas there is a regular system of conservancy, night-soil and other refuse are removed, and steps are taken to protect the sources of water-supply, but none of them hive a regular system for the supply of pure water or an adequate soheme of drainage. Like the villages, they suffer from crowded and badly-aligned blocks of houses intersected by narrow lanes, and the mortality from plagae, dysentery and cholera is generally greater than in the rural areas. In the town of Gayã special sanitary precautions are necessitated by the large influx of pilgrims every year, and the Lodging-house Act is in operation. The lodging-houses provided for pilgrims are licensed; they are regularly inspected, and measures are taken to see that their sanitary arrangements are adequate and that an improper number of pilgrims are not accommodated in them. As cholera often follows the pilgrim train, the Lodging-bouse Fund also maintains a cholera hospital, at which cholera and other contagious diseases are treated.

The opposition to vaccination was formerly very strong, and 35 years ago it was reported that nothing short of compulsion would ever induee the people to submit to the operation. The popular belief was that vaccination provoked the goddess Sitala, who presides over small-pox, to visit the offence with small-pox in a deadly form, and the objection to vaceination was consequently very deeply rooted in the minds of the people. This prejud ice has passed away, as the people now realize its efficacy, and, though vaccination is compulsory only in municipal areas, it has steadily gained grcund except among a few bigoted elasses. More than 20
per cent. of the popolation were protected against small-poix in the seven years ending in 1905, and during the ten years 1895-96 to 1904-05, the number of successful vaccinations increased from 43,000 to over 61,000 ; the average during the last four years of the decade was as high as 64,000 . In spite of the faet that plague has created additional difficulties and impeded the work consider* ably, the ratio of persons successfully vaccinated in 1904-05 was $20 \cdot 46$ and in the preceding five years $28 \cdot 30$ per thonsand of the population. Statistics of vaccination from 1892-93 to 1901-02 will be found in the Statistical Appendix.

Medioxi Ivaritue thone.

Thirty years ago there were only five dispensaries in the distriet, viz., the Pilgrim Hospital at Gayã and four branch dispensaries at Aurangãbád, Jabānäbād, Nawāda and Sherghāti. There are now three hospitals at Gayā itself-the Pilgrim, Cholera and Zanãna IIospitals, and 12 dispensaries in the outlying parts, situated at Arwal, Aurangãbād, Dāūdnagar, Deo, Fatehpur, Jahānābảd, Khizrsarái, Nabinagar, Nawāda, Rafiganj, Sherghāti and Tekäri. 'The number of persons sarvel by each dispensary is 93,092 , and in 1904 the average number of patients troatcd was 66 par milo of the population: The total number treated annually has risen from 52,000 in 1894 to 99,000 in 1904 and the daily average number from 668 to 1,071 . The amount expended on dispensaries during the five years $1890-1903$ was over $2 \frac{1}{\frac{2}{2}}$ lakhs of rupees,-a sum esceeded only in two other districts in Bengal (Dacea and the 24 -Parganas) ; Rs. 72,000 was received from subscriptions, and the ratio of these subscriptions to the total expenditure was thus 28.31 per cent.-a somewhat low proportion. Besides these institutions, there are 441 medical practitioners ; of these only 54 have diplomas.

By far the largest number of patients are treated for fever and next to that for skin diseases; ear diseases and venereal diseases come next in frequency, followed by eye diseases. Cataract operations are very numerous, and during the five ycars 1896-1900 successfal operations of this nature were performed in the case of 874 males and 543 females-a total exceeded only in the adjoining district of Shāhābăd. All the hospitals and dispensaries, except those at Deo, Fatehpur, Khizrsaräi, Nabinagar and Rafiganj, have accommodation for in-patients ; they contain a'together 95 beds for men and 73 beds for women. Statistios of the daily attendance,

In ?oor and ontlloor, during the years 1892-1901 will be found in the Statistical Appondix; and a statement of the receipts and expenditure, and of the principal diseases treated at each disjensary in $1904-05$, is given at the end of this ohapter.

The premier medical institution in the distriet is the Gayia Pilgrim Hospital, so called because it is specially intended for the

Gayä Pilgrim Hospital. medical relief of the pilgrims who visit the shrines at Gayã or pass through it on their way to other sacred places ; in recognition of the servics thus rondered a large contribution is made to its upkeep by the Pilgrim Fund known as the Lodging-house Fund. There are two separate buildings, the one for male patients and the other for female patients, the former of which contains eye, surgical and medical wards; and there are altogether 80 beds, of which 50 are in the male ward, 22 in the female ward and 8 in the pauper ward. The hospital also contains a separate building for moribund patients, an operation room, well equipped with modern aseptic appliances and surgioal instruments, and a laboratory in which elinical bacteriology is carried on. The principal cases treated are fever, and eye, ear, skin and venereal diseases. Practically every operation known to modern medical science has bean carried out, but operations for cataract and stone in the bladder predominate.

The Lady Elgin Zanana Hospital, which was established in 1895 for pardänashin women, is in cbarge of a lady-doctor. It is a large and well-equipped building, containing 28 beds, and is also provided with cottage wards. It has aequired considerable popularity in the district and is doing mich excellent work.

Name of Dispessany.			Operations.	DIEEASES TEEATED,					
			Fever.	Skin disecases.	Ear diseases.	Venereal diseases.	Eye diseases.		
Pilgr	rim Hospita]			1,012	1,126	2,428	2,08	1,028	1,450
Gay ${ }^{\text {a }}$ Shol	ers		525	731	464	821	323	163	
Zans	na \quad		648	386	401	409	583	464	
Arwal	Dispeneary	*..	381	1,042	924	339	581	337	
Aurangàbad	*,	...	222	2,116	608	464	463	320	
Daudnagar	"	**	286	739	C20	404	210	218	
Deo	**	-	149	701	737	271	219	123	
Fatehpur	*	**	97	1,059	922	233	471	157	
Jahanabad	*	**	403	1,610	1,558	766	707	519	
Khizrearal	"	**	88	1,076	348	213	277	207	
Nabinagar	*	**	181	887	1,211	506	78	188	
Nawhda	*	**	291	1,407	1,142	1.059	670	611	
Rafiganj	*	\cdots	262	828	850	2:0	201	814	
Sherghath	*	**	300	1,137	591	112	67	155	
Tekari	"	***	704	1,427	514	400	347	nest	
	Total	**	6,449	16,272	19.318	8,365	6,311	46,237	

(a) Of this sum, Rs, 3,500 was contributed by the Gayl Lodgiug-house Yasd.
(G) This hospital is malatalned by the sane Yund.
(e) This dlspensary is maintained by the Dee Raj.
(d) n n n on Tekari BiN.

CHAPTER VIII.

AGRICULTURE.

The average annual rainfali of Gayá is about 45 incher, but owing to the position of the district, it receives a full supply from

Generay condimoss. neither monsoon, and the rainfall is frequently defivient, fitful or untimely. Besides this, the general slope of the country and the Lature of the soil render the land very unretentive of moisture, and the local rainfall would therefore play a comparatively minor part in the agricultural industry of the district, were it not for artificial works of irrigation. Owing to the conformation of the surface, water is carried off so rapidly into the rivers that artificial measures for storing water and leading it from the rivers by channels (locally known as pains) are indispensable. It is this neeessity that has given rise to the network of pains and the thousunds of artificial reservoirs, called ähars, whieh are scattered over the district; and it is on these sources of supply that the people almost entirely depend, except in the west near the Son, where a eonsiderable area is irrigated from the Patna-Gayà canal and its distributaries.

As already stated, the drainage flows northwards to the Ganges from the Chotã Nâgpur plateau on the south, finding its outlet through a series of rivers and hill torrents, nearly all of which dry up after the rains are over. The district is thus divided into a number of parallel strips, each of which again slopes down to the river-beds on either side. The high land in the middle, which is known as tänr, is of poor fertility; it can only be irrigated from $\bar{a} h a r s$, and grows chiefly rabi and bhadoi crops. This tänr land is most extensive in the south, but towards the north, where the surface is more levei, the land is more easily irrigable. Most of the fields are supplied with water from the channels taking ofil from
the rivers as well as from $\bar{a} h a r s$, and the low lands near the rivers are gencrally sown with rice, which is the principal crop grown.

It has been explained in Chapter I that the district of Gayä may be roughly divided into two tracts, that to the north well irrigated and fairly fertile, and that to the south sparsely populated, densely woodel and indifferently cultivated. The northern portion of the district, which constitutes about two-thirds of the whole area, is fairly level and is mostly under cultivation. In the south the rise towards the hills of Chotã Nägpur is more rapid; the country is more intersected with hills and ravines; and the proportion of sand in the soil washed down from the hills is much larger. Cultivation in this tract is consequently much more scanty, and a large area is composed of hill and scrub-covered jungle extending for several miles below the hills.

Though the district is divided broadly into these two large tracts, there are four minor subdivisions * with different degrees of fertility. The first, or fertile, tract comprises the Jahãnābād subdivision and the western canal-irrigated strip of the Aurangabad subdivision, the whole tract consisting of Jahānābād and Arwal thānas, and of a portion of Dāūdnagar thāna. The western portion of this tract has the benefit of canal irrigation, while the northern and eastern portions are intersected by pains or irrigation channels leading from the rivers Morhar and Mohãna. Moreover, the greater part of this portion of the district was once the basin of the Son river itself, and the soil being largely composed of old alluvial deposit is naturally more productive than elsewhere.

The second, or moderately fertile, tract consists of two areas, the first being composed of thãnas Gayã, Tekäri and Atri in the centre of the distriet, and the second of thanna Nabinagar in the extreme south-west. These areas have also the benefit of ample irrigation from several rivers, and there are very few villages which have not either a pain or sub-channel (bhoklā) leading off from some efficient source of water-supply.

The third, or less fertile, tract also consists of two areas - the first being the Nawada subdivision, and the second the rest of the Aurangäbăd subdivision, consisting of thāna Aurangābād and of a portion of thaina Dâûdnagar. Only about half the villoges in these two areas are sufficiently irrigated, and moreover, the paine

[^0]that do exist only give an adequate supply of water in years of good rainfall.

The fourth, or infertile, tract consists of thãnas Sherghatiti and Bariehatti, or the southern half of the headquarters subdivision. Besides containing extensive tracts of jungle, there are few pains, and only about ten per cent. of the villages are irrigated. Hence paddy is little cultivated, as compared with the rest of the distriet, and is liable to failure in a moderately bad year. ${ }^{*}$

In the northern traet the soil is generally alluvial, consisting chiefly of pauru, a loam with a small proportion of sand, and Kewàl, a species of hard stiff clay, opening ont, when dry, in gaping fissures, which make cross-country riding impossible. In the soath a great part of the existing sub-soil has been deposited by dillavion from the hills, the rivers issuing from which carry along with them quantities of hard white and yellow sand ; this accounts for the large proportion of sand in the soil and for the large areas which are almost entirely composed of sand. This sandy soil is called balseat, balmat or ba/sundri. In some places also there is a white soil called rehra, which is rendered more or less useless by being impregnated with carbonate of soda; when the impregnation is so great as to render it unculturable waste, it is known as üsar. The presence of carbonate of soda (reh) in paddy land does not, however, seem to make it infertile, the soda being presumably dissolved by the water. Pauru soil is best adapted for the cultivation of paddy, though in the area irrigated from the canals even sandy soils produce fine paddy; it requires irrigation, and gram is almost the only crop that can be raised without it. Kewäl clay is best suited for rabi crops, as it retains moisture longer, and the rabi has to depend to a great extent on sub-soil moisture.

The erops grown in Gaya are divided into three great divisions-the aghani, bhadoi and rabi orops. The aghani is the winter crop of rice which is cut in the month of Aghan (November-December), the bhadoi is the early or autumn crop, reaped in the month of Bhado (August-September), consisting of 60 days' rice, maruä, kodo, Indian-corn, millets and less important grains; while the rabi crop, which is so called becanse it is harvested in the spring (rabi), includes such cold-weather crops asgram, wheat, barley, oate, and pulses. Out of the total
normal cropped area, 57.5 per cent. grows aghani, 31.8 per cent. grows rabi, and only in $9 \cdot 4$ per cent. is bhadoi raised. The latter is, therefore, relatively an unimportant crop, and the people are mainly dependent on the aghani rice, and secondly on their rabi crops.

Rice, which occupies a normal area of $1,338,300$ acres, is the staple crop of the district. The aghani or winter rice forms the greater part of this crop, and is raised on over $1,318,000$ acres. It is sown broadcast after the commencement of the rains in June or July on lands selected for ssed nurseries, which have previously been ploughed three or four times. After four or six weeks, when the young plants are about a foot high, they are generally transplanted ; each plant is pulled out from the land, which is soft with standing water, and planted again in rows in floaded fields, in which the soil has been puddled. After this the rice is left to mature, with the aid of water, till towards the end of September. The water is then drained off and the fields are allowed to dry for 15 days, and at the end of that time they are again flooded. It is this practice, known as nigär, which makes the rainfall, or failing that, irrigation essential to successful harvest. These late rains (the Hathiyā) are the most important in the year, as not only are they required to bring the winter crops to maturity but also to provide moisture for the sowing of the rabi crops, Should no rain fall at this period, or if water cannot le procured from artificial sources, the plants will wither and become only fit for fodder ; but if seasonable showers fall or the crops are watered from ähars, pains or canals, the riee comes to maturity in November or December.

Some winter rice known as bäog is not transplanted; it is sown broadcast on low lands at the commencement of the rains, and also in years in which there has not been sufficient moisture to allow of transplantation at the proper time. The bhadoi rice, which covers 20,000 acres, is also sown broadeast in June or July and not transplanted; it is regarded as a 60 days' crop, and is generally harvested in August or September. There is another kind of riee, known as the boro or spring rice, which is sown in January, transplanted after a month and cut in April. It is grown only on marsh lands and in the beds of shallow streams, and the area cultivated with it is insignificant.

A noticeable featare of rice cultivation is the way in which it is conducted religiously aceording to lunar* asterisms (nakskatras). The seed-beds throughout the country are, if possible, sown within a period of 15 days, called the Adra nakshatra, which lasts froni about the 20th June to the 5th July. Transplantation from the seed-beds goes on during the Punarbas, $P_{u k h}$, and dsres nakisiatras (18th July-15th August). The water on the fields in which the young plant has grown up after transplantation is regularly drained off in the Utra nakshatra ($12 \mathrm{th}-25 \mathrm{th}$ September)-a period when, as a rule, there is little rain ; and after the exposuro of the soil to the air and sun, the usual heavy rain of the Hathiyä nakshatra (26 th September-7th October) is awaited. After this, it is the universal custom to keep the fields wet during the Chitra nakshutra (8th-20th Oetober) ; and at the commencement of the Siväti naǩłhatra (21st October-3rd November) they are again drained, and the paddy is left to itelf till the Disïkha nakshatra (4 th-15th November) when it is ent.

Although there are sometimes slight variations in the times of sowing and transplanting from those given above, yet the cultivators are always extremely strict in draining off the water from the fields in the Utra nakshatra. It may be said that every cultivator begins, if he possibly can, to let off the water on the first day of that nakshatra, and this is done, without any hesitation, in the country commanded by the canals, because the cultivator looks to the Irrigation authorities to supply him with water, whether the Hathiyä rain fails entirely or not. It is generally agreed that after this draining (nigãr), rice plants cannot exist for more than from 15 to 20 days, unless watered, without rapid deterioration; and as no ryot will, under any eircumstances, take water till the Hathiyā nakshatra has commenced, the Canal Department is called upon to irrigate within a very few days every acre under lease. If water is delayed a week after it is wanted at this stage, the crop suffers; if it is delayed three weeks; it withers beyond redemption.

The bhadoi crops require plenty of rain with intervals of bright sunshine to bring them to maturity, and constant weeding is ne.essary for a good harvest. The time of sowing depends in

Biador cmors.

[^1]the breaking of the monsoon; if the rainfall is early, they are sown in the beginining of June; but they can be sown as late as the middle of July without the prospect of the crop being lost. Harvesting usually exterids from the 15th July to the 15th October.

The principal bhadoi orop is maruā (Eleusine Coracana), a yaluable millet, occupying a normal area of 77,000 acres, which is sown at the commencement of the rainy season and sut at the end of it. It is pattly mown broadcast and partly transplanted to ground that afterwards gives a winter crop. The grain is largely consumed by the poorer classes in the form of sattu, or is converted into flour and made into a coarse bread ; in bad seasons, when the rice crop fails, it supports the people till the spring crops bave been. harvested.

Next in importance to maruä coines maize (Zea Mays), or Indian-corn (nakai), which is raised on 63,000 acres ; it is sown from the 20th June to the 20th July, and cut from the 15th July to the 15 th August. Besides being consumed in the form of bread, or as satlu, the young ears while still green are often parched in the cob, and so eaten. Among millets jowār (Sorghum vulgare) is grown on 19,000 acres, and kodo (Paspalum scrobiculatum) is a favourite crop sown on poor lands early in the rains and reaped after they are over. It is a millet cheaper than rice, which is popular with the poorer elasees, as it can be readily grown on an inferior soil; it is eaten boiled like rice or sometimes in chapatis, but is not very nutritious. The chief oil-seed grown at this time of the year is til or gingelly (Sesamum indioum) which is sowi in July and reaped in September ; its total acreage is about 10,000 acres. The castor-oil plant (Ricin us communis) is sown from the 20th June to the 1st August and is cut from the 29th December to the S0tk April.

Ploughing of the fields for the rabi erops commenoes early in the rains and is continued at convenient intervals, sufficient time being given to allow the upturned soil to be exposed to the air. In the ease of clay soils in unirrigated parts, more frequent ploughing is necessary for all rabi crops, because otherwise the soil would become so hard that if there was no rain at the sowing time, a crop could not be sown: The time of sowing rabi is generally regulated by two circumstances-the heary rains of the

Hathiyà nakshatra (26th September to 7th October) and the approaching cold season. If sown too late, the plants will not beoome strong enough to resist the cold; if sown too early, the heavy rain will probably drown the seed and sprouting orop, and so necessitate re-sowing. The cultivators are thus anxious to sow as soon as the heavy rains have ceased, and the general rule is that the proper time for sowing most rabi crops is the Chitra nakshatra (8th to 20th October), and that it must not be delayed beyond the Sivati nakshatra (21et October-3rd November). A sufficient supply of water is essential at this time ; later on several waterings are required, and if there is no rain, the crops have to depend on well irrigation. They are finally harvested between the last week of February and the middle of April.

The most important of the cereals is wheat, which occupies altogether 134,000 acres. It is generally sown broadcast on sandy soil, and requires as a rule four waterings. It is frequently sown in lands from which a crop of early rice has been tuken, and is often sown together with barley, or with gram, mustard or linseed. The stabble is grazed by cattle, and the pounded straw (bhũa) is used as fodder. About half the area under wheat, or 70,000 acres, is ocenpied by larley (Hordeum vulgare), which is sown partly with wheat, partly by itself, and partly with pulee. Like wheat, barley is sown broaleast and requires four waterings.

The other great elass of rabi erops consist of pulses, of which, gran or linat (Ciecr arietinnm), is by far the most extensively grown, as a normal area of 96,000 acres is given up to it. Besides forming an excellent focder for fattening horses, this pulse is eaten by the natives in all stages of its growth. The young leaf is eaten, and the grain is split and converted into dall, or pounded into sattu. Among other erops may be mentioned peas, the chirna millet (Panicuma miliaceum), kulthi (Dolichos biflorus) and various pulses and léntils, such as rahar (Cajanus indieus), masuri (Ervum Lens) and khesüri (Lathyrus satieus). The erop last named is frequently sown broadeast among the ries stubble. It requires no care, and the grain is eaten, in the form of däl or as flour cookedin ghi, by the poorer classes. If eaten in excess, it produces a form of paralysis known as lathyrism.

Oil-seeds occupy an important position among the rabi crops. Oilseeds. The chiff is linseed (Linum usitatist:mum), which is grown on a
normal area of 80,000 acres. It now forms one of the chief articles of export, and every year-many thousands of maunds are sent out of the district. The other principal oil-seeds are mustard and rape, which are raised on 22,000 acres.

Other
Crops.
Cotton. under cultivation being only 1,000 acres. Thirty years ago the cultivation of cotton was carried on to a considerable extent in the Jahánābād subdivision, and also in the Nawãda subdivision and to the west of the district about.Dēūdnagar ; and in the beginning of last centary it was much more extensive, as the eloth fa : tories at Jahãnābād, Dāūlnagar and elsewhere created a demand for the raw product. The local cotton industry has now been ruined by the competition of imported piece-goods, and the area under ootton has shrunk till it now amounts to only 300 acres.
Indigo. Indigo is another crop the cultivation of whie' has been practically abandoned, though it has never really flourished in Gayã. In 1812 Dr. Buchanan Hamilton wrote that indigo was of little importance and its cultivation was on the decline. Later, however, European enterprise took up the industry, and several faetories were established in the west of t he district. There was a large indigo concern at Sipāh, commonly known as the Arwal coneern, and a factory at Tararh near Dāūdnagar, with outworks at Pura, a hamlet of Kaler village on the Son, and at Baghoi on the banks of the Pūnpunn, the whole being known as the Dāudnagar soncern. The industry with difficalty survived the Matiny, when all the factories were dismantled and the labourers dispersed, and from that time its growth rapidly declined until 187s, when the introduction of the Son canal system converted the poorest lands in this part into the most fertile. Indigo was then entirely dropped, giving way to zamindäri management, a safer and more profitable undertaking. The cultivation is now practioally extinct, and indigo is grown only on 100 scres.
Opium.
Of the other crops raised in Gaya, poppy is by far the most important, as not only is the normal area under the plant considerable (51,000 acres), but the price obtained for the crude opium renders it a very valuable crop. The production of opium is a Goverament mon opoly, and no parson is allowel to grow poppy except on account of Government. Annual enzagements are entered into by the cultivators, who, in considuralion of the pay-
mont of an advance, agree to eultivate a certain quantity of liand with poppy and to deliver the whole of the opium produced to the Government at a rate fixed according to its eonsistence, but subjeot to deductions for inferiority of quality. The best soil for poppy is loam, so rituated that it can be highly manured and easily irrigated, and for this reason homestead land is generally solected. The cultivation requires much attention throughout the growth of the plant. From the commencement of the rains in June until October the ground is prepared by ropeated ploughings, weedings and manuring, and the seed is sown in November. Several waterings and weedinge are ordinarily necessary before the plant reaches maturity in February. After the plant has flowered, the first process is to remove the petals, which are preserved, to be used afterwarls as coverings for the opium cakes. The opium is then collected during the months of February and March, by lancing the capsules in the afternoon with an iron instrument and seraping off the exudation the next morning. In the beginning of April the cultivators bring in their opium to the weighment centres of the different sub-agencies, where it is examined and weighed, and the balance due according to the Opium Offiver's valuation is paid to them. Final adjustments are made in August, after the value of the drug has been asoartained by assay at the Patna Factory, where the final process of preparing the drug in balls or eakes is conducted.

There is a tendency for the cultivation of poppy to deerense, as year by year it is becoming less profitable to the ryotp. The plant is delicate ; a thoroughly favourable year comes only at uncertain intervals ; and the cultivators have had to contend with a number of bad seasons. There is accordingly a marked tendency to withdraw from an industry so precarions and to substitute the more robust cereals or such paying crops as sugareane, potatoes, chillies and vegetables. This movement has been'quickened by the fact that the value of cercals has increased of recent years, while the price paid for the erude drug remains stationary; and in the decade ending in 1903-04, the area under poppy bas decereased in the Gayã Sub-Agency from 58,900 bighas to $41,000 \mathrm{brghas}$, and in the Tehta Sub-Agency from 42,903 bigkas to 41,000 bighas. Each of these Sub-Agencies is in charge of a Sub-Deputy Opiam Agent, who secs to the execution of agreements to grow
opium, supervises the payment of advances to the cultivators, and checks the weighment of the crude produce and the payment of the sums due to the ryots. He has to satisfy himself that the land engaged for is cultivated with and fit for poppy, to test the measurements of it, to make advances for wells and see that they have been dug, and generally supervise the cultivation and control the subordinate staff.

Sugarcane.
The falling off in the area under poppy has been largely made up by the estension of sugarcane caltivation. In 1884 the area under sugarcane was estimated at less than 13,000 acres, but of recent years the crop has grown immensely in importance, and its caltivation has rapidly extended, so that the average area covered by it has increased to 30,100 acres during the five years ending in 1904-05. This increase is partly due to the i truduction of the Son canal system in the west of the district, where sugarcane, potatoes and poppy, which could not otherwise have been raised, have been substituted for the ordinary food-grain crops So great is the necessity of water for the growth of sugarcane that its cultivation in this tract before the era of the canals involved almost prohibitive labour on well irrigation, but this difficulty was removed by the regular supply of water afforded by the canals. Another powerful stimulus was given to the inlustry by the introduction of the iron roller mills worked by bullock-power, invented in 187+ by the proprietors of the Bihiáa estate in Shähäbäd, and henee known as the Bihiâ mills. Some years indeed elapsed before their great superiority over the rude machines in use was recognized, but the ryot in spite of his conservatism learnt to appreciate their advantages ; their popularity is now firmly established; and the old-fashionsd applianees which neeessitated the eutting up of the cane and extracted a mere fraction of the juiee are now no longer seen.

Sugareane is now one of the most profitable crops grown in the district in spite of the labour and expense its cultivation requires. It is a crop which not only exhausts the soil, but osupies the ground for a long period, extending over a year. It is planted during February or March, in outtings of about a foot in length pliced in rows about 2 feet apart. When the plant begins to sprout, it is well watered and the surrounding earth is loosenad, Eich plant grows into a cluster
of canes, which are generally ready for cutting in January or February. The crop requires great care, and mast have 7 or 8 waterings, even if the other crops have to do withont water in consequence.

Vegetables are cultivated in garden plots for bousehold use, and also on a larger scale in the neighbourhood of towns. The most extensively grown are the potato, egg-plant or baigun (Solanmm Melongena), ground-nut (Trichosanthes dioica), and pompkins (Lagenaria vulgaris) and gourds (Benincaso cerifera), which may be seen climbing over the roofs of the houses in nearly every village. Onions, yams and cucumbers are also common, and in the winter radishes, carrots and melons are cultivated. Among condiments the favourite is the chilli, out turmeric, coriander and ginger are also grown in considerable quantities. The most popular fruit is the mango, which grows freely and forms a valuable addition to the food of the people during the hot weather, though the flavour of the local fruit is decidedly inferior to that of the Malda and Bombay varieties. Of the other cultivated fruits, the commonest are the plantain, lemon, lichi (N'cphelium Litchi), jack fruit (Artocarpus integrifolia), oustard apple (Anona squa mosa) and bel fruit (Aegle marmelos). The kiajiarr tree (Phanix sylvestris) is cultivated abundantly for the sake of its juice, which is made into liquor; and the mahuä flower is used for the manufacture of country spirit, and is also eaten by the poorer classes, especially by those living near the jungles. The cultivation of the climbing vine call pän (Piper betel), the leaves of which are used to wrap up the supari or aresa-nut chewed by natives of all ranks and classes, is carried on to a considerable extent at Ketaki and some neighbouring villages in the Aurangàbäd subdivision, and at Tungi and Deodha in the Nawäda subdivision.

The total normal area under different crops is $2,292,700$ acres, of which 194,300 acres are cropped more than once, so that the net cropped area is $2,098,400$ acres. The returns for the five years ending in 1804.05 show, however, that the average cultivated area is $1,921,200$ acres and the net cropped area $1,726,900$; the proportion under aghani, rabi and bhadoi crops being $52 \cdot 5,38$ and 9.5 per cent. respectively, and the area under cereals and pulses $1,631,800$ acres and under vil-seeds 182,900 aeres. This difference is apparently due to the fact that the area

Vigortamess AND VRUTTS.

Aamodrtubal sfatibica.
actually cultivated varies every lyear, and is often less than the normal area-a result due in a large measure to the bhäolı system, under which the cultivator frequently does not take the trouble to cultivate all the land he holds. The average area irrigated from the canals during the same period was $53,500^{\circ}$ acres, but the greater portion of the district is irrigated from ähars and pains, and the total area irrigated from all sources varies from 60 per cent. in the Sherghāti and Bārāchatti police circles to 90 per eent. in the Dāūdnagar and Arwal thãnas.

Extension of cultivailoz.

According to an estimate* made 30 years ago, the area under cultivation at that time was $1,728,006$ acres, of which only 864,000 acres grew rice, while the uncullivated area was $1,419,000$ acres. The normal cultivated area has now increased to over $2,000,000$ acres, and that under rice to over $1,300,000$ aeres, wlile 158,006 acres are classed as culturable waste, and the area not available for cultivation is 655,800 acres, or about orefifth of the total area of the district. This increase of cultivation is largely due to the great progress in the western portion of the district, where the canals have turned neglected waste into fertile fields. Speaking of Dâu!nagar in 1812, Buchan:n Hamilton says:-" This division has been a good deal neglected, and the foorer lands are in general waste, and in the dry season liok very dismal, being covercd with stunted thorns without a pile of grass. Some of the best land even is neglected, and is e'iiefly cecupied by poor-looking woods of the Palas (Butea frondos,s)." His description of the country round Arwal is equally dep-essing, as he says :-" A great portion is neglected, and wiere the soil is poor, is chiefly overgrown with thorns of the stunted $j u j u b$. Where the waste land is rich, it is overgrown with harsh long grass, which in the dry season loses all vegetation.' The appearance of this tract is now widely different, as it includes some of the best rice-growing land in the district, and the barren waste is now covered with fields of waving grain. Elsewhere there are large areas not yet brought under the plough, especially in the south. Much of the waste has, however, been reclaimed in recent yearsa process which has been accelerated by the development of communications and the construction of new lines of railway;

[^2]but in spite of this, the area still uncultivated is very large, and many parts of the district are undoubtedly capable of greater agricultural dey̧elopment.

The Bijhari is a conservative cultivator, and has an apathetic indifference to agriculiural improvements. Various experiments have been made from time to time in the Government and Wards estates with differ unt varieties of manures, seeds and modern implements, but these experiments have had little influence on cultivation generally, and practically the only innovation which has foned favour with the people is the Bihia sugarcane mill mentioned ab v .

The scientific rotation of erops is not adopted as a principle of
Improve:
MENTS IN yeritops oy culatia. sios.

Rotation. agriculture, but as a uatter of practice it is obscrved, especially in the case of the more exhausting crops, susb as sugarcanv, whech is never grown on the same land year after year, but is always alternated with other crops and generally with rice. A great part of the land growing winter rice boars that crop year after year, but sometimes a second crop of thesäri is raised, or if the land continues moist until harvest time, it may be ploughed and sown with gram and peas or barley. The bhadoi crols of early rice, maize and millets are also followed by a mixture of various pulses and oil-seeds with wheat and barley, the mixture of pulses and coreals serving the purposes of rotation, as the pulses belong to the leguminous family and enrich the soil with nitrogen.

Manure is largely used for poppy, sugarcane, potatoes and other garden produce, but not for other crops. Cow-dung is the most important manure, but its value is much diminished by the negligent manner in which it is stored, and the feeding of cattle is generally so poor that it is not rich in manurial constituents. Besides this, a great deal is lost by its conversion into fuel-cakes, as firewood is scarce, except in a few favoured localities, and its high price makea its use prohibitive for the ryots. For the most part, therefore, cow-dung only finds its way to the fields in the form of ashes ; and the only other manure in common uss consists of household refuse.

From the figures in the Statistical Appendix it will be seen that loans under the Land Improvement Loans Act are taken by the people with fair readiness, and that the amount advanced

Land Improvement and Agrieulturists Loans Act.
under the Agriculturists' Loans Act is comparatively small. The latter are devoted to the purchase of seed and cattle, and the former to the improvement or extension of the means of irrigation, stich as the maintenance and repair of artificial embankments, water-channels and reservoirs.

The cattle raised in the district, though hardy and suited to the climate, are generally of a very mediocre stamp; little or no care is taken in selecting bulls for breeding, immature or poor specimens being used ; and the Branhmani, or dedicated, bulls are usually no better than their fellows, though the freedom with which they are allowed to graze keeps them in better condition. The cattle are especially small in the south, and in consequence of their poor physique, thres bullo:ks, viz., a pair under a shaft and a leader attached in front of the shaft, are constantly used to draw a loaded cart. The stock has little chance of imptovement, as besides the want of careful and systematic breeding, there is difficulty in obtaining pasturage. In the thinly-cultivated tracts to the south, there is much pasture land and sufficiency of grass for the herds, but elsewhere the ground retains little moisture during the hot weather, and the grass being parched up by the burning sun, fodder is scarce. Nearly all the land available has been given up to cultivation; and the cattle have to be content with the scanty herbage found in the arid fields or are stall-fed on chopped straw.

Buffaloes are employed for the plough, especially when deep mud is teing prepared for the transplantation of paddy, and are also used for slow draught work, bat their chief value is for the milk which they yield in large quantities. Sheep are extensively reared by the Gareri caste, especially near the hills, where there is fallow land for pasture, and the wool is largely used in the manufacture of carpets, rugs and blankets. Goats are bred almost in every village, and pigs of the usual omnivorous kind are kept by the low easter, such as Doms, Dosaidhs, Bhniyãs and Musahars. The only horses are the usual indigenous penies; they are generally undersized and incapable of heavy work, but they are very hardy and those used for ekkäs often have astonishing endurance and a great turn of speed.

Vetorinary assistance.

The discases most prevalent among cattle are rinderpest and foct-and-mouth disease ; over 1,000 cases of rinderpest and 550
cases of foot-and-mouth disease were reported in 1903-04. Veterinary assistance is afforded by itinerant Veterinary Assistants, and also at a veterinary dispensary which the District Board maintain at Gayã; 70 horses and 81 cattle were treated as in-patients at this dispensary in 1904-05 and 352 horses and 644 cattle as out-patients.

CHAPTER IX.

NATURAL CALAMITIES.

In common with other Bihàr districts, Gayã is liable to suffer from scarcity, when the rainfall is deficient or untimely, and from floods, when it is excessive. The effects of anything but a very serious failure of the monsoon are, however, counteracted by a wonderful system of irrigation, and, though there has been searcity in some tracte, the present generation has not known the protracted agony of a widespread famine. The people are also practically immune from the disaster of great inundations. The rivers, being for the most part hill-torrents, rise rapidly in flood after heavy rainfall, but their beds are so wide and the drainago slope so rapid that, even when they burst down in flood, they rarely overflow their banks, and, as they fall almost as fast as they rise, inundations are of short duration and cause bat little damage.
Fioons. Local floods are occasionally caused, by the rivers breaching their banks owing to abnormally heavy rain in the hills, and also when a river leaves its old course and ajpropriates the channel of a pain or artificial irrigation canal. More serious floods are fortunately rare. Writing in 1877, Sir William Hunter said that there had been only one considerable flood within the memory of that generation-and this had occurred 87 years previ-ously-but the water remained stationary for one day only, and the flood subsided in 9 or 10 hours. In more recent times the district has been equally free from inundation, and the only floods which call for notice are those which took place in 1896, 1901 and 1905.

The most disastrous flood which bas oecurred within the memory of the present inhabitants of Gaya is that which visited the eastern portion of the Nawada subdivision on the 16th September 1896. For two days there had been exceptionally heavy rain, which filled up all the water-courses and reservoirs, and
at midday the river Sakri, whieh takes its rise in the hills to the south-east, came down in flood, sweeping cattle, houses and trees before it, and covering the country for miles round with a sheet of water some two to twelve feet deep. There was but little loss of life, as the inundation was of short duration and the people were forewarned of its approach ; and only 34 persons wcre drowned in the Gobindpur outpost, and 15 in the Kauwãkol outpost, where the Natah and Baghail streams rose in flood. The damage to property was, however, very great, over 2,000 honses being completely demolished or seriously damaged, and large numbers were left homeless. The village of Gobindpur suffered especially severely, as out of 540 bouses only 40 were left standing, and the houseless people had to take shelter in three masonry houscs whith essaped and in the office of the police outpost. The latter had been temoved from another site 20 years previously, in order that it m'ght be beyond the reach of floods, but the site to which it had been tiansferred proved equally unsafe, as the office was the only portion of the builuings which remained uninjured. Many of the roads were breached, and long stretches, especially on the Nawäda-Pakribarrâwañ Road, were swept away. The damage don9 to cultivation was searesly less serious. The munths of several pains were silted up, many ähars and other reservoirs were damaged or destroyel, and large areas were filled with sand, the crops being destroyed and the lnd rendered unoulturable. The damago cansed in this way w is especially great in Dariyâpur. In South Dariyärue only 12 out of 125 houses were left standing; and in the notthern portion of the village some 50 houses were demolished, and the seventy houses which were left standing were all more or less damaged. Of the total cultivated area of 1,600 bighas, absut 700 bighas were filled up with sand, and in place of a pain, which used to be only 18 cubits broad, the Sakri threw off tbree wide branches extending over an area of one-sisth of a mile. In all nearly 100 villages were affected, and the total loss of property was very great.

The inundation of 1901 was due to a simultaneous rise of both the Son and the Ganges. On the 1st September the level

Flood of 1901. of the Son at the Koelwar bridge was only 9 feet, but by the morning of the 3 rd idem it had reach:d the height of 17.6 feet;
and the river continuing to rise throughout the night and all through the next day, the gauge showed the unprecedented floodlevel of 22 feet by 2 A.M. on the 5th September. At the same time* owing to a high Himalayan flood, the Ganges was rising abnormally high, and on the morning of the 5th September the flood-level-of that river also was higher than any previously reoorded, the gauge at Digha reading $35 \cdot 10$ feet in the early morning and $35 \cdot 60$ at midday. The Son, being thus unable to discharge the volume of its waters into the Ganges, forced its way over its western bank and poured over the low-lying lands towards Arwal.

The flood rapidly subsided, and to this must be attributed the small amount of damage done. No loss of life occurred, and the number of cattle drowned was inconsiderable. House property, however, suffered seriously, and some 520 houses were wreeked in the Arwal thāna. The damage to the crops was inappreciable, and the only serious loss was that of the houses and of the grain stored in them, whioh deprived their owners of their means of livelihood. In the event, it was found only necessary to relieve some of the poorer elasses whose houses and stocks of grain had been swept away, and for this purpose a grant of Rs. 1,000 was given by Government and Rs. 600 was raised by public subscription.

Flood of 1805.

The immediate cause of the flood of 1905 was the exceptionally heavy rainfall which took place on the 14th, 15th and 16th September. On these three days there was heavy rain all over the district, but it was especially heavy in the southern portion of the Aurangabad subdivision and at Jahãnābêd, the fall ranging from 11 inches at the latter plaoo to $1 G\}$ inches at $\mathrm{Nabi-}$ nagar. Owing to this excessive precipitation, the rivers Punnpũn, Dardhí and Jamunã rose to a great height and soon began to overflow their banks and flood the country. The drainage slope being from south to north, the water was held up by the two main embankments running east and west, viz., the Mughal araiGayă Railway line and the Arwal-Jahãnābàd Road. The water rose to a considerable height on the southern side of these embankments on the 16 th September, and the waterway provided proving insufficient, they both gave way. The railway line was breached in several places near Jakhim; and though the bridges on the Arwal-Jabanaibiad Road fortunately stood, long lengths of the road
were swept away. The Grand Trunk Road was also breached in two places, and many minor roads suffered severely. At Jahânâbad the Court compound was under water to the depth of about a foot, and this too at a distance of over 200 yards from the ordinary bed of the river. The flood was of short duration : iadeed in one place it was seen to rise $\$$ feet and again go down 2 feet within 10 hours on the 16th. It had entirely subsided in the Aurangābâd subdivision by the morning of the 17 th , though it went down somewhat more slowly in the Jahānābīd subdivision.

As in the flood of 1901, little serions danage was caused by the inundation. The people bad time to escape to the high lands near their homes, and 7 persons only were killed by bring buried under falling hoases. Many āhars were breached, but the crops were on the whole benefited, owing to the fertilizing silt deposited by the receding water. But few eattle were drowned, and the only loss sustained by the people was the destruction of their houses, which were washed down in large numbers.

Owing to the protection afforded by the canals in the western portion of the distriet and the indigenous system of irrigation in other parts, the district as a whole is practically safe from famine. It suffered to some extent in 1866, but passed through the scarcity of 1874 withont receiving more than the modicum of relief insisted upon by Government, and in the great famine of 1897 no relief was required. In 1866 there was undoubtedly great suffering in outlyig parts to the south and south-west, but the more fertile portions of the distriot were not seriously affected in spite of the failure of the rains, and during the period of greatest distress the average daily number of persons receiving relief was only $\mathbf{1 , 1 6 7}$. The great famine of 1874 made but little impression on Gayá, the largest number of persons on relief works being 2,756 and the average number gratuitously relieved for 71 months being only 977. Even in the famine of 1897, which was so terrible a calamity elsewhere, Gayǎ did not suffer. Test-relief works were opened but were not attended, and out of the 50,000 persons who received gratuitous relief only 1,000 were inhabitants of the distriet.

The district snffered severely during the famine of 1866, but no standard exie's by which to gange the actual pressure. Tho

Collector reported that the price of common cleaned rice rose to Rs. $6-10-8$ a maund, but prices in this district are an uteertain index to the pressure of want. Market rates apply only to a small fraction of the population; and in a time of scarsity, when people are unwilling to sell, they indicate far greater hardship than really exists. The distress was most severe in the vicinity of Gayã town, and to the south-west and south of the distriet within the Aurangābād and headquarters subdivisions, the distressed trict extending over an arca of 1,300 square miles. The rice crop, in the greater part of this area, may be said to have failed completely in 1864 ; and from that time prices rose considerably and general distress began to be felt. The rabi or spring orops of 1865 were also m uch below the average, as the ares under thoze crops was much contracted, owing to want of sufficient moisture in the ground and the difif culty experienced in obtaining seed, while the outturn was still further diminished by heavy hailstorms in the spring of $1865^{\text {d }}$. From these causes the distress became so acute that in May and June the poorer classes were reduced to living upon the seeds of the mahuä-tree, berries, grass and herbs. This extreme dislitution abated on the setting in of the rains, prices fell, and as field labour was obtainable, special relief measures were not deemed necessary. Whe condition of the people, however, did not improve, and the general distress reached its climax in October 1865, when only 7 seers of ries could be purshased for the rupee. The Collector commenced a daily distribution of grain, subseriptions were raissd to defray the cost of maintaining the starving people, and a daily average of about 1,000 persons were fed at Gaya town from the 12th Octaber to the 17th December. In the latter month, when the riee harvest afforded means of employment, and the market again fell, relief was suspended. But there was a renewal of the distress in March 1866. Severe hailstorms and a heavy rainfall in February, with the premature arrival of the hot winds, caused mech injury to the spring crops. The stoeks in the hands of dealers beerme exhausted, and the local supplies were mainly dependent on importations from Patina, the land-owners, who arelarge holders of grain under the bhäoli system, withholding their stocks from the markst, in the expeetation of still graater scar.ity. Still no spe.ial measuris were adopted till June, when

Collector reported that the price of common cleaned rice rose to Rs. 6-10-8 a maund, but prices in this district are an uncertain index to the pressure of want. Market rates apply only to a small fraction of the population; and in a time of scarsity, when people are unwilling to sell, they indicate far greater hardship than really exists. The distress was most severe in the vicinity of Gayã town, and to the south-west and south of the district within the Aurangābād and headquarters subdivisions, the distressed tract extending over an area of 1,300 square miles. The rice crop, in the greater part of this araa, may be said to have failed completely in 1864 ; and from that time prices rose considerably apd general distress began to be felt. The rabi or spring orops of 1865 were also u uch below the average, as the area under those crups was much contracted, owing to want of sufficient moisture in the ground and the difficulty experienced in obtaining seed, while the outturn was still further diminished by heavy hailstorms in the spring of 1885 . $^{\text {d }}$. From these causes the distress became so aente that in May and June the poorer classes were reduced to living upon the seeds of the mahnä-tree, berries, grass and herbs. This extreme dislitution abated on the setting in of the rains; prices fell, and as field labour was obtainable, special relief measures were not deemed necessary. The condition of the people, however, did not improve, and the general distress reached its climax in Octobcr 1865, when only 7 seers of ries could be parshased for the rupee. The Collector commenced a daily distribution of grain, subscriptions were raissd to defray the cost of maintaining the starving people, and a daily average of about 1,000 persons were fed at Gayi town from the 12th October to the 17th December. In the latter month, when the riee harvest afforded means of employment, and the market again fell, relief was suepended. But there was a renewal of the distress in March 1866. Severe hailstorms and a heavy rainfall in Fcbruary, with the premature arrival of the hot winds, caused mech injury to the spring crops. The stoeks in the hands of dealers beeime exhausted, and the local' supplies were mainly dependent on importations from Patina, the land-owners, who are large holders of grain under the bhäoli system, withholding their stocks from the mark tt , in the expeetation of still grater scar.ity. Still no spe.ial measuris were adopted till June, when
relief. centres.were opened at Gayā town, and at Sherghāti, Nawäda and Aurangabid; subsequently in August and September, additional centres were established at Konch and Fatehpur.

The sufferings of the starving people were still further aggravated by cholera, which made its appearance in the town of Gayã, about the middle of July, and thence spread over the interior of the distriet : the severe character of the outbreak is sufficiently illustrated by the fact that out of 927 pauper recin pients of relief admitted to the Gayā hospital between June and November 1866, 447 died within an average period of two days after admission. During the period of the greatest distress, the average daily number of persons rceaiving relief ranged from 1,167 in the beginning of July to 934 in the first week of September. The mortality reported by the police, who probably underrated the actual loss of life, established the faet of 3,387 persons having died, or more than double the number of those relieved. This lamentable disproportion can only be attributed to the fact that the relief depots were practically inaccessible owing to their distance from the mass of the starving population.

The course of events in Gayã during 1873 strikingly demonstrated the principle that the seasonable distribution of the rainfall is of more importance, within certain limits, than its aetual quantity. The fall was below the average only in the beadquarters and Aurangabad sublivisions, and in each of these tractes the deficiency was not more than 4 inches. Judging of the harvests from the quantity of rain which fell in 1573, it-is difficult to believe that there could have been an extensive failo je of the crops in Gaya in that year. Only 3 inches of rain fell in the first six months of the year, and even June, which is ordinarily elaseed as a portion of the monsoon period, was al nost raisless ; but in July there was an excessive precipitation amounting to double that of average years and varying from. 20 inches in the west to 27 inches in the east of the district. In August the fall was slightly under the normal, but still it was sufficient to maintain the inandations caused in the preceding month. The autumn erops were seriously injured, and many reservoirs, on which the winter rice depends in dry years, were bayt The September rains, which are perhaps the most important pr these
crops, were however markedly deficient, the consequence being a failure of varying degrees of intensity in different portions of the district. It is difficult to gather from the official reports and narratives a distinct idea of the outturn of the autumn crops, but it was probably not less than half of an average crop. The reports on the winter rice crop which, in the end of 1873 , wero very gloomy, assumed, as the harvest progressed, a much more hopeful tone; and in February 1874, when it had been gathered on the threshing floors, the outturn all over the distriet was estimated to have been three-eighths of an average crop, the yield in parts of Aurangabâd and Nawảda subdivisions being even eharacterized as particularly fine. Towards March the district was providentially favoured with an abundant fall of rain which, combined with the judicious utilization of the canal water in the west of the district, se ared to it an average spring fooderop and a good outturn of opium. The price of rice did not rise above 10 seers to the rupee; from June to August 12 ssers were obtainable, and it was t.uch cheaper later on.

Private trade was ative inr uglout the year, and one of the chief causes of the distress in 15e8, viz., the impassable condition of the Patna and Gayă Road, no longer existed to hinder the transport of grain. Governmont grain, Lowever, was, stored throughont the district, relief works wsere instituted, and a comparatively small number of the poorest classes were charitably felieved. But these special measures were simply precautionary. In charitable relief 220 tons of rice were cistributed, $2,4: 3$ tons soid for eash, 85 tons advanced on loan, atd 117 tons paid in wrges. In all Rs. 11,522 were distributed in charitable relief, $\mathrm{K}_{\mathrm{s}}, 40,648$ paid as wages, and Rs. 40,503 advanced on reesveruble loans. The daily average number of persons charitibly relieved in the whole district rose from 490 in the beginning of May tos, 120 in the beginning of August, and fell in the beginning of Oetober to 542. There were $45+$ labourers employed on relief works. in February ; 1,334 in April ; 2,756 in June, and 377 in August.

Scarcity of 1888 -89.

The irregularity of the monsoon of 1885, marked by a lato commencement and early oessation, together with excessive rainfall in $A_{k}^{\text {g gust, resulted in the partial destruction of the autumn }}$ ri.e e . nd in the diminution through drouglt of the yield of
the winter harvest. The total rainfall was plentiful, amounting to $55-78$ inches, but it was very unevenly distributed, being enormously excessive in August, when over if inches fell in one day, and far below the requirements of September and October. Evontually, the outturn of both the bhedoi and rabi crops was under 40 per cent, and that of the aghani crop only 50 per cent. of a normal crop. Scareity ensued, but there was not much distress, except in a tract near Sherghåti. Some relief works were started, but the expenditure only amounted to Rs. 4,300, the largest average daily attendance being 4,500 in June.

The history of the famine of $1896-97$ showed clearly how great is the protection seeured to Gaye by the system of pains and

Famise of 1896-97. àhars in a year of unequaliy distributed rainfall. The rains of 1896-97 began late, not commencing till late in June, when there was a heavy fall amounting to $8 \frac{1}{\mathrm{f}}$ inches. There was another downpour of $10 \frac{1}{4}$ inches early in Juiy, and then a long drought succeeded, which was followed by nearly 11 inches of rain in August. Another long break next ensued till the middle of September, when the rainfall was nearly 4 inches. After this there was no more rain, and by the end of October the defieiency was $7 \frac{1}{f}$ inches or 17.8 per cent. The season was thus characterized by heavy falls alternating with long periods of drought, which would have resulted in scarcity elsewhere, as the bhadoi would have witheted, the sced-beds of rice dried up, and the riecfields remained unplanted. In Gayï, however, the evil effects of these vagaries of the rainfall were counteracted by the system of irrigation by which the water is conserved in reservoirs and thence distributed over the fields, for, as each burst of rain occurred, the water was carefully stored and used as required. I/ the event, the outtura of aghani, which is the most importapt crop in the distriet, was 50 per cent. and that of bhadoi 75 per cent. of a normal crop, while the rabi crop was nearly/up to the average. Prices here as elsewhere ruled very higb, rising to $8 \cdot 4$ seers to the rapee at the end of October 1896, but considerable stocks were held by the cultivators, Exportation was stepped, and the reserve stores of grain which the people keey wero everywhere held up, partly for consumption and partly fior sale when prices rose still bigher. Work was plentiful in the fieids, and as this is always paid chiefly in grain, the labourer did not
feel the high frices any more than the agriculturists who lived on their own stocks; while there was plenty of additional emplogment on the Mughalsarai-Gayā and South Bihăr Railway lines, which were then under construction. Grave apprehensions were entertained at one time for some tracts, viz, the northern part of the Jahānābād subdivision, the portion of the Sherghāti thāna south of the Grand Trunk Road, and a tract in the north-east of the Aurangābäd subdivision between Aurangäbâd and Goh. In these tracts the people were not so well off as elsewhere, because the rainfall was more scanty ; and the system of reservoirs being incomplete, there had been a more or less complete failure of the aghani crop. Eventually, however, even these tracts did not suffer, the rabi crop being far better than had been expected; and, as in 1873-74, the stocks of the people enabled them to maintain themselves until the rabi was reaped, and again till the bhadoi harvest came in. The district, in fact, passed scatheless through the famine, no relief being required except what was given in kitchens and poor-houses along the Grand Trunk Road to pilgrims and travellers, and, late in 1897, to beggars and paupers in the town of Gayã. The only expenditure incurred by Government was in the shape of advances to landlords and tenants, Rs. $1,06,000$ being given out under the Land Improvement Loans Act, and Rs. 23,600 under the Agricultarists' Loans Act. The expenditure on gratuitous relief was met out of charitable funds, Rs, 9,900 being spent in the distribution of grain and money, while the maintenanee of kitchens cost Rs. 7,700. In this way about 50,000 persons were relieved, but, as already stated, only 1,000 of these were natives of the district.

Since that time the district has been entirely free from famine or scarcity of any kind, though searcity was apprehended in a limited area in the west and south of the Aurangabid subdivision in 1902. This tract is unfertile, the soil is poor, and there is practically no irrigation, so that the orops are scanty at the best of times. There had been bad harvests in the two priceding years; the laut rice erop had been almost a complete failure owing to a failure of the rains, and the outlook for the rabi crop was very poor. The ordinary cold-weather rains however fortunately fell, and this crop turned out a fair one ; the population is scanty and inured to bad barvests and hard living ; and labour being available
ia the neighbouring areas of greater prosperity, as well as on. works speeially opened by the District Board in the tract affected). the people were enabled to hold out, and there was but little seal distress.
2. When the distriet has been affected so slightly by one of thegreater famines on record and has suffered so little from similar visitations in previous years, an immanity from general famine can reasonably be claimed for it. The reasons for this immunity are not far to seek. The distriet is cultivated almost entirely by artificial cultivation, canal irrigation renders one-fifth of the ares independent of the vicissitudes of the seasons, and, though the mainfall is light, the system which obtains elsewhere is devised soas to utilize all the water available, whether that brought down by the hill-streams or the-surface drainage of the country. The cultivators themselves are protected from the distress consequent on searcity and the rising priee of food by the rescrve stocks of grain which they keep, in accordance with immumorial custom, bath fortheir own consumption and to afford seed for the ensuing burvest. The effect of bigh prices is moreover discounted in the case of lundless labourers by the fact that they are paid in kind, while the lowest and most destitute of them, the kamiyâs, are entitled to be fed by their masters in virtue of their position as bond-servants.. The district is covered with a network of roads, and the railway has now penetrated in all directions, with the result that even the more remote parts are within easy reach of the markets. The development of communications has had the effect of levelling prieos over larger and larger areas, and at the same time there has. been a great advance in the material prosperity of the people. On the other hand, isolated tracts, where the soil is unfertile and where there is practically no system of irrigation, are alwavs. exposed to the danger of scarcity; and aecording to the official. returns fur 1905-06, it is estimated that 2,051 square miles, with a population of 772,000 , is lisble to famine, and that 49,000 persons: aw likely to eqquire relief in the event of scrious famine.

CHAPTER X.

IRRIGATION:

Sy minme or IRBLGATION.

The agricultural prosperity of Gaya depenils in an unique degree on an extensive system of artificial irrigation. To the north-east the cultivators have the benefit of the Son Canals and ate thus eertain of an ample and rogular supply of water, but e'sewhere the people are dependent on methods of irrigation which have been practised from time immemorial. This indigenous system is the outcome of the natural conditions and physical configuration of the country, and has been evolved to meet the obstacles which they place in the way of cultivation. The districh is characterized by a scanty rainfall, a rapid slipe off which the water quickly runs, and a soil wh'oh is eitber a stiff clay or ar loose sand equally unretentive of moistare. To a ryot of Eastera. Bengal the country would seem utterly unsuited for rice oultivation, both from the nature of the surface and the comparative [reantiness of the rainfall. But both difficulties have been overcome by the ingenuity and industry of its inhabitants, who have devised a sybtem by which the natural drainage is blocked and the water impounded for use, and have also brought the rivers into the: r serviee by diverting the water they bring down.

The district is bounded on the sonth by the high lands of the Chota Nagpur plateau and the spurs which projeet from it, and along the northern boundary it marches with the low-lying plains. of the Patna district. The general slope is acconlingly from south to north towards the Ganget'e valley, and it is comp:ratively rapid, the average fall northwards being about six to four feet in the mile. A number of wide rivers debouch from these southern hil's. and intersect the district as thry flow across it from south to north. They are swollen torrents after heavy rainfall in the hills, but the slope of the eouatry is so great and their bels are so sandys
that the water is rapidly carried through the district or it percolates down through the sand. In order therefore to prevent the water being wasted in this way, long narrow artificial eanals, called pains, are led off from the rivers, by means of which the river water is conveyed to the fields. The same rapid slope would also prevent the land from gaining the full benefit of the rain water, were it allowed to flow uncheeked; and the cultivation of the rice crop, on which the people almost entirely depend, would be impossible, if the water were not impounded in extensive reservoirs, called āhars, which are formed by constructing a series of retaining embankments across the line of drainage. The whole forms a most remarkable and ingenious system of artificial irrigation, which is admirably supplemunted by the manner in which the water is distributed from field to feld and retained in them by a network of low banks. In the cold weather, again, when tho ahars have dried up and the pains no longer contain water, the people can fall back on theirl weils; and thas tho crops are protected from failure throughout the year.

The rainfall being often scanty and untimely, the system of pains has been devised in order to make the most of the scanty suppls, by utilizing the rivers for the purposos of cultivation. The rivers of Gayă have only a fitful flow ; they may fill for a few days and be almost empty for the next fortnight, and then fill again with a day or two's rainfall; but by means of thess artificial channels the cultivators secure all the water they brin; dowa. Roughly one-third of the total irrigation of the district may bo said to be derived from pains.

They are led off from a point facing the current of the river, some way upstrenm above the level of the land they are intended to irrigate ; and it is often 2 or 3 miles before the water of tha pain reaches the level of the cultivation. Some are hrge with many distributaries and some small with fow or no distributaries. They are sometimes as mnch as 10,12 or even 20 miles in length, and some of them irrigate hundreds of villages. The largest pains that feed a number of distributaries and irrigite many thousand acres are known as dasiain pains, ie., literally puins with 10 brauches. The main channels are kaown as pains, and the smaller channels taking off from them aro called bhokitia, while the smaile:t channels that lead immediately into the fields

Indarnovs SYBIEM.

Pains.
are known as karhïs. Where the level of the country permits, the water is led into the fields from these pains and bliokläs by weans of the karhäs, but where the level of the water in the pain or bhokli is below that of the fields on either side, the water is saised by some of the artificial means in use in this part of the country, such as the lath kunru or lever and buket, the waterWäsket called chänr or sair, and the karin or wooden canoe. shaped lift.

* During the rainy feason from July to September, the prins are full and flow: well, but as the rains cease and the rivers dry up, the waler has to be led into the pain by maans of training works, known as derhiain or baluzin. In a year of seanty rainfall or when the rain has been untimely, these pains are of th2 greatest importance for the rice crop and the sowing of the rabi. Should there he no rain at the time of the Ilathuya nakehutra-that most exitical period of the year when water is absolutely essential to fill out the ripening grain, a sudden activity is at once seen in the rivers. Training works are vigorously pushod on at the heads of the pains to try and lead into them every Jrop of water left in the beds of the rivers; and the more wealthy laodlords eause bïndhs to to erected at customary places to block up what water there is and thus give it a head into some pain.

These channels have been construeted by the landlords, wha are also responsible for their maintenance-a work which entails considerable expense, as the pains quickly silt up, owing to the sandy nature of the river-beds, and have to be cleared out every year or two. Ordinary peity maintenance, however, such as the periodical clearance of silt, the repair of small broaches, ete., is done by the cultivators themselves under the goim system. At the order of the landlord or his local agent or servant, the cultivators have to supply one man per plough to turn out on these occasions and carry ont the work; the peas ants cone in a boly, and this is called a goäm.

The painssre essentially private osnals, and in the case of the more importint which serve many villages, each village has its fised turn of so many days and hours to we the water, these tarns * being assigned by mutual agreement or anciont eustom, Tais distribution of the right of irrigation by turns (päria) is known as tpiribunat. In the case of the principal pains there is a celchrated
itgister of the distribntion-the Lal Bahi-prepared by the former owners of the Tekäri Rãj; and the cutries in this book are still accepted as evidence of the rights of the villages specified in it. Disputes, however, frequently oceur. One village often tries to get more water that it should, or else when the rainfall is scarce, villages lower down seck to get water before their proper turn; and the disputes sometimes terminate in blows, and occasionally in boodshed. Quarrels are also common in regard to bändhs or garïndis, erected actoss the pains or bhokläs to steal or divert the twater, thus depriving lands further down of all supply; but oonsidering the namber of these channels and the vital importance of water in years of unfavourable rainfall, and considering the faet that they are all under the private control of the zamindarrs and tenants, it is surprising how few cases end seriously.

Side by side with the pain system is that of ähars, the latter being constructed essentially for the irrigation of the high lands between the rivers whish the pains cannot serve, though some are also constructed on the lower levels where pains are practicable. An âhrr is an artificial catehment basin formed by blocking the drainage of the surface water, or even by blocking a small drainage rivulet, and thus locking up the water. These cat hment basins are nearly always of a moro or less rectangular shape, embankments being raised on three sides of the roctangle, while tho fourth side is left open for the drainage water to enter. Owing to the slope of the land, the highest embankment is usually on the north, and this embankment generally runs east and west. From either side of it other embankments I roject southwards, diminishing in height as they proceed, acecrling as the level of the ground rises. In this way a three-sided eatchment basin is formed, deopest at ${ }^{\prime}$ the northern side, where there is always some arrangemsut to let out the water for the purposes of irrigation at the spot where the drainage of the catchment would naturally issua if there were no embankments.

If the ähar is built on a drainago rivulet, and thus receives the drainage of a larger area than its own, there is a spill or weir to pass off surplas water, which may perhaps flow to another ahar farther north. In small ahars where the quantity of water banked up is not great, it is gencrally sofficient to cut a narrow pasage through the earthen bonk at the d epest spot to draw off the water
as required. If the mass of water is greater, a half pipe, formed out of the trunk of a palm-tree and known as a dong \bar{a}, is let into the bank to protect it from excessive erosion; and if the ähar is a very big one, a masonry outlet is often built into the bottom of the bank, which goes by the nane of bhão or bhāoäri. The different parts of an ähar also have distinctive names. The bed inside the embankments is the pet or belly, the banks are called pind, the side banks being known as alang, and the main bank at the lowest side of the $\bar{a} h a r$ as the pith or back-a name which is also frequently given to the pcrtion behind the main embankment.

When the water is wanted to irrigate, not the lands to the north, which are on a lower level, but the lands to the east or west on the same or a higher level, it is lifted by one of the methods for raising water mentioned above. One or other of these lifts is erected on the edge of the ahar, and the water is raised into a channel on a higher level, through which it flows to the field where it is required. If the water in the ahar, is low and does not reach the bank, a depression (kandari) is dug by the side of the bank, and a small channel is cut from the deep part of the $\bar{a} h a r$ leading into this depression. Sometimes when the level of the water is very low, it is necessary to employ a series of two or even three lifts to raise it to the level required.

The prime value of these eatchment reservoirs is that they store up the water that would otherwise be carried away by the natyrally rapid drainage of the country. They are in fact indisponsable on the higher tracts that lie between the river-basins, firstly for irrigating the paddy as it grows up, and secondly for the sowing and germination of all the rabi errps. On these high lands pains are not practicable; and if it were not for the ähars, there would be no water available for the purposes of irrigation atter the month of September. Almost half the irrigation in the district is effected by the ãhar system, which is quite distinet from that of gearàbandi mentioned below and also from that of pain irrigation. A pain may eventually lead into an âhar after it has almost spent itself, but, as alrealy stated, pain irrigation is not possible on the highest lands, for which the ähars have been specially devised. They are in fact nsually constructed on high lauds in the parallel strips lying between the rivers, where the
clay is comparatively hard and little silt accumulates, whereas the pains take off from the sand-lalen rivers and irrigate the lands situated in the river-basins. Theso ähars are often of great sizo, the largest irtigating about 1,000 acres. They are usually kept in good repair, by digging a layer of soil from the bed of the ahar and heaping the soil on the banks. As in the case of pains, small repairs are done by the tenants, and large repairs requiring considerable expenditure are carried out by the landlords.

The system of ahars and pains, which prevents the water eacaping and makes it available for cultivation, is further supplemented by that known as genräbandi. It has already been remarked that the country slopes gradually to the north and that the rivers and hill-streams, issuing from the hills and flowing northwards, intersect it and cut it up into a number of parallel strips. Each of these watersheds again has a strong slope east and west from the centre down to the river-beds, and much of the land is too high for artificial irrigation and depends for its moisture on the rainfall. A series of low retaining banks are therefore built across the line of draingge, which are connected by other banks running north and south. The main outer embankment (gherawā), which is about 4 feet high, encloses a considerable area ; this is split up by minor embankments called genrā ; and within these again are low banks (āl) round the fields. This series of banks, which has aptly been described as resembling an enormous chess-board, is admirably adapted for retaining the surface water, as not a drop is allowed to flow beyond their limits and the stiff soil is given time to absorb the moisture. This system is known as genräbandi, and is followed not only on the high lands, but also in the irrigated area, in order to ensure the fullest possible use being made of all the water available.

As water does not remain in the rivers for more than a few months, and the paing usually dry up before the end of the year, irrigation must be carried on from ähars or wells when this source of supply fails. In a very dry season the ahars, also dry up by the end of the year, and from January to June recourse must bo had to wells, except when rain falls. Well irrigation is almosti entirely confined to the immediate vicinity of the villages, where poppy, market and garden produce, maruä, barley and similar erops are grown, and where the produce is much better and more
valuable than in the lands further from the village, which are irrigated from puins and ahars. Perbaps 90 per cent. of the wells in the district are in lands immediately adjoining the village, and they are hardly ever used for the kharif or the larger portion of the rabi crops. Temporary wells are also commonly used in tracts where the soil is sandy or along water-courses. Such wells afford considerable protection against drought to the poppy which is so latgely grown in the district, and also to other dry crops. It has been estimated that 12 or 13 per cent. of the total irrigation is effected from wells.
Water-lifts. The methods of drawing and distributing water are those common to the whole of Bihār, and bere, as elsewhere, the most usval contrivance for lifting it is the $l a t h$ or lever. This cönsists of a long beam working on an opright forked post, which serves as a fulerum; at one end the beam is weighted with a log, stone or mass of dried mud, and at the other is a rope with a bucket attached, which when not in use rests above the well. When water is required, the cultivator pulls down the rope till the bucket is immersed ; as soon as the tension is relaxed, the weight attached to the lever raises the bucket of itself; and the water is then emptied and led by narrow channels into the fields. Irrigation by means of the not (leather bucket) is much rarer. When this method is employed, water is raised by a large leather bucket secured to a rope, which passes over a rude wooden pulley supported by a forked post, and is fastened to the yoke of a pair of bullock. These supply the motive power, for as soon as the bucket has been filled, they descend an inclined plane, varying in length with the depth of the well, and thus tring it to the surface. One man is required to look after the bullocks and another is stationed on the well to let down the mot and empty it when it comes to the surface.

Two other water-lifts commonly used are the karin and sair. The karin is a long wooden scoop, made out of a single piece of wood, hollowed out and shaped like one-half of a canoe. The broad open end of this scoop rests on the water-channel leading to the field, and the pointed closed end is dipped into the water, which is then raised by means of a lever overhead with a weight at the end of it. This machine is used for lifting water either from the reservoirs (ahars) which are so numerous in the district
or from a lower to a highér channel where water is plentifal and the elevation small. The sair or chäar is used when the quantity of water remaining is small; it is a triangular basket made of bamboo with the edges raised on two sides; cords are attachod to. each side, and these are held by two men, one standing on either side of the ditch from which the water has to be raised. Holding the ropes attached to either sido, they swing it backwards, and bringing it down sharply into the water, carry the forward motion of the swing through until the basket, now full of water, is raised to the level of the water-channel, when the eontents are poured out.

The north-western portion of the district is not dependent on the methods of irrigation mentioned above, as it is served by a portion of the Son canal system. This system derives its supply from an anicut across the Son at Barun, which was begun in 1869 and completed in 1875 at a total cost of 15 lakhs of rupzes. The anicut or weir, which is 12,469 feet long, consists of a mass of rubble stone laid to a uniform slope and stiffened by walls of masonry foundel on shallow wells. Scouring sluices are provided at either flank; and these are fitted with getes which can be opened or closed at any state of the river other than high flood. By means of these gates the level of the water in the pool above the weir can be kept at the beight required to feed the canals. Here the Main Eastern canal branches off and runs as far as the Pünpūn river, 8 miles to the east. It was originally intended to carry this canal as far as the Monghyr district, but after being eut as far as the Púnpún, the project was absndoned. The Patna canal leaves the Main Eastern canal 4 miles from the Son, and, running north through the pargana of Arwal almont parallel to the western beundary of Gayã, eventually joins the Ganges at Digha between Bankipore and Dinapore. Its total length is 79 miles, of which 43 miles lie within this distriet, where it irrigates parts of the farganas of Siris, Dädar, and Goh, and the greater part of Arwal. The total area commanded by these two canals and their distributaries is 170,000 acres, being bounded on the north by the Patna distriet, on the south by the Grand Trunk Koad, on tl e east by the river Pânpuns, and on the west by the Son. It is estimatel that 166,000 acres aro annually irrigable, but the area actually irrigated has never been anything like
this figure. In 1904-05 it was 56,400 acres, of which 48,700 acres were under rice. Though the area actually under irrigation is even now only one-third of that irrigable, it has been expanding speedily, and it is now 50 per cent. greater than in 1893-91.

Canal
administration.

The whole system is under the control of a Superintending Engineer, who is assisted by an Executive Engineer and an Assistant Engineer. The latter are responsible for the maintenance of the canals and the conduct of irrigation operations, and a separate establishment is entertained for the collection of the revenue. The irrigated area is divided into blocks, the lease of all the lands in each block being arranged so as to lapse in the same year; and in fixing the period of the leases efforts are made to see that leases for an equal area expire each year. Water is supplied to the caltivators on application on a prescribed form, the year being divided into three seasons, that is, hot weather, kharif and rabi. A date is fixed for each season, and the lease or permit granted for that season is only in force for that particular period.

Besides the season leases, there are long-term leases, or leases for a period of seven years, which are granted at a somewhat reduced rate. These long-term leases are only granted for compact blocks defined by well-marked boundaries of such a nature that the leased lands can be clearly distinguished from the adjoining unleased iands, and also so situated that unleased lands will not be ordinarily irrigated by water supplied for tha land included in the block. These boundaries are mentioned in the application for the lease, on receipt of which a spceial report is submitted to the Subdivisional Canal Officer. If the lease is likely to be approved, he issues orders for the block to be measured, and a detailed khasrä, or measurement of each cultivator's holding is then made. The lease is finally approved by the Divisional Canal Officer who issues the permit, but before this can be done, every culcivator, who has fields within the block, must sign his name against the area which has been measured, and which will be assessed in his name. In order to admit of a lease getting water for the season, a provisional permit is granted for the season on the area originally applied for; this permit is cancelled when the long lease permit is finally granted. Fields which cannot be ordinarily irrigated, or for which canal
water is uot ordinarily required can be exoluded from the block, such fiells being duly noted in the khasrä or measurement paper.

In these long-term leases water-rates are charged for the area measured and aceepted by the cultivators, whether water is required or not ; and the channel by which the area is irrigatcd mast be registered as well as the name of its owner. In rabi and hot-weather leases water is supplied on applieation, and water-mates are leviod on the actual areas irrijated, and not neecssarily on those specificd in the application. In order to assist the Canal Department as far as possible in regulating and distributing the water to the different cultivators named in the leases lambardärs or headmen are appointed; theso are influential men of the village, who are appointed on the approval of the majority of the culivators concerned. Their duty is to assist in measuremente, to give in the names of the cultivators of the difficent boldings, and to see that water is properly distributed over ths leased area. For these duties they are paid a commission of 3 per cent. on the total assessment on long leases and of 2 pei cent. on season lcases.

There are five rates charged for the water supplied, viz., (1) rabi scason leases from the 15 th Oetober to the 25 th March at Bs. 2-8 an acre; ($\mathbf{(2)}$ hot-weather leases from the 25th March to the 25 th June at Rs. $4-8$ an acre; (${ }^{(3)}$ leases during the rame period at Rs. 2 for each watiring; (\mathbf{t}) kharif seazon leases b tween the 25th June and the 25th October at Rs, 4 an acre and (5) seven years' leases for bloo's areas for any kind of crop ketween the 25th June and the 25th March in the next year at Hs. 3 an acre.

In the case of bhäoli lands, where the produce is divided between landlord and tenant, the duty of paying the water-rate falls primarily on the tenant, but usually he prevails on the landlord to pay half or such proportion as the latter reveives of the prodcoe. In the case of nagdi lands for which rent is paid in eash, it has become a recognized custom that the landlord should pay half the water-rate, and in practice this is done by dedueting half the rate from the demand leviable from the ryot.

When the long-lease system was inaugurated, it was caleulated that water would be given for 50 per cent. of the whole area of a village; and this pition was marked off into one or mose

Water-
rates.
well-defined bloeks, for the irrigation of which a charge was made at a reduced rate. The cultivator is supplied with water enough for his own block, but be may not ase it beyond these limits; and it is, therefore, laid down that there must be a well-defined villagechannel to conduet the water from the distributary, and that it is: not to be allowed to escape to an âhar. Thu landlords generally bear the expense of constructing these channels, but occasionally it is met by the tenants when the land is held under occupancy right. Of all the leases the most popular are the long leases, which are given only for the areas for which protection can be assured even in the driest years. The rates for this olass of lease were originally fixed at a low figare, owing to the backwardness of the cultivators in resorting to canal irrigation and to the fact that the use of canal water is not indispensable in years of ordinary rainfall ; the holdere of these leases have preferential claims to water daring periods of high demand such as occur in dry seasons ; and, as the cultivators have been quick to recognize the advantages of the system, the area under long leases has steadily expanded, until at the present day by far the greater part of the whole irrigated area receives water on long lease, and the demand for such lẹases cannot be fully met.

Wonkrya oy the indtaryOUS EYBTEM.

Canal irrigation has turned a most infertile tract, a large papt of which was sandy and unpraductive, into a region of rieh fertility. It serves, however, but a comparatively small portion of the district, and the remainder is dejendent on the judigenous methods of irrigation mentioned above. There can be no doult that the latter system is absolutely indispensable, and that. without it a large portion of Gaya would be couvertel into borren waste. The construction and maintenance of these irrigation works is consequently a matter of supreme importance, but. unfortunately there is a tendency todet them fall into disrepair. Owing to the general prevalence of produce-rents and the physical. and olimatio conditions that necessitate the apkeep of artificiat works of irrigation, the duty of inaugurating and maintaining. them lies to a peculiar extent upon the landiords. The ryots could not or. would not combine of their own accord to keepi: them up. Individuilly, they have not the capital necessary to undertake expensive works of such magnitude, and collectively they have not yet acquired suficient self-reliance to unite amony;

Tbemselvis for the Iurpose of constructing them. The result is That it is the customary obligation of the landlords to construct and maintain these works of public utility; but the latter are not always alive to the necessity and advantage of doing so. This is particalarly the ease with pains, which are apt to be negleeted, while there is a more scrious danger in the fact that no new pains of any considerable size are being construoted. The largest of these irrigation channels, and those that serve the greatest number of villager, were made many years ago, when larger areas were under the control of single zamindarrs, and the local authority of these zamindarrs to enforoe their orders and wishes whe more absolute than it has been, or can be, under the restricfions imposed by the legislation of more recent times. As a gencral rule, no large pain is now exeavated, and many of the largest of former times have fallen into disrepair and even disuso. This result is due to the gradual disintegration of property, that parcellement of proprictary rights which has been encouraged by modern legislation. Where formerly there was a single zamindâr in mere or lcss absolute authority, there are now perhaps fifty petty landholders, whose interests conflict or whose relations are so strained that they can never combine to carry out a work of mutual benefit. As an instance of this, it will be sufficient to cite the case of a pain now in almost complete disuse, which is reported to have served a bundred villages in its day. This pain passed through a tract of country, where, owing to three suecessive years of scanty rainfall, scarcity was apprehended, and the Collector endeavoured to persuace all the landholders through whose properties the channel passed to combine and repair it, as a certain remedy against scareity in the future. These efforts were unsuccessful ; many of the zamindarrs were quarrelling and engaged in litigation inter se; and nothing would induce them to carry out the work.

Not ouly are pains liable to be neglected owing to the subdivision of proprietary rights, but their number is apt to diminish owing to the want of a proper headwork to control the inflow, as well as to regulate the water-level of the channel at its entrance. Much damage is caused by pain scouring out at the head, and sometimes such widening and deepening results in the channel of the pain becoming ultimately the gourse of the river.

In this way, the original bed of the river becomes silted up; the tract of country formerly irrigated from it by other pains taking off lower down are left without means of irrigation, and cultivated lands are converted into waste ; while the main stream, having adopted the artificial channel of the pain, cuts away the adjoining land, and floods and depreciates other lands by a deposit of sand.

CHAPTER XI.

SYSTEMS OF RENT PAYMENT.

4. Tas system of rent payment prevalent in Gayd is that known as bhaoli; i.e., the payment of rents in kind. Some 70 to 75

Tris Bhảoli syetem. per cent. of the cultivation is held under this system, whioh is a necessary result of the physical configuration of the country and is intimately conueoted with the system of irrigation in vogue. It has already been explained that Gayã owes not only its fertility, but almost its very existence as an agricultural country to artificial irrigation, and that extensive irrigation works are necessary to render rice oultivation possible. Their construction requires a large expenditure which the ryots themselves would Be unable to afford and an amount of combination which they have not yet attained. The whole of the tenants in one village may depend upon the water obtained from one ähar or pain; one reservoir or obannel again may serve several villagos some distauce apart ; and it is quite beyond the means of the cultivators to construct and keep up suoh extensive works or maintain their rights in them against the encroachment of others. The landlord is the only person who can supply the capital for their constraction or fight for the villagers' rights ; and for this again ample means are necessary, as the bulk of the litigation of the district arises out of irrigation dispates. Withont pains and ahars, the tenant in many parts would get no rice crops; and on the other hand, if he paid a fixed cash rent to his landlord, the latter would be in a position to spend the money in other ways and to neglect the duty of laying ont channels and embankments and of keeping them in order. Custom has therefore decreed that these works shall be made and maintained by the landlord, each tenant paying his quota of the expense by giving a certain proportion of the harvest as rent; and the result of this
arrangement is that the amount of the landlord's rent depends entirely on the extent to which he provides facilities for irrigating the land. Splendid riee crops are obtained wherever the embankments and water channels are kept in proper working order ; and, on the other hand, where they are neglected, the yield falls off enormously in a year of eapricious rainfall. The aetual produce of the land, therefore, varies in proportion with the extent to which the zamindar incurs expenditure on irrigation; and this consideration has induced the cultivators, so far as the memory of man or tradition runs, to secure the active partnership of their landlords by giving them a share of the actual crops in lien of a regular money rent. Rents are accordingly paid in kind for lands benefited by irrigation works constructed at the zamindar's expense ; the profits of the latter are directly affected by the outturn; and an assurance is thus afforded that he will not neglect to spend money on their upkeep. In this way, if the landlord does not bear what are called gilandäzi charges, i.e., does not maintain the reservoirs properly, the crop is a failure, and he gets little or nothing; while if he spends an adequate amount on such works, a good harvest is reaped and he gets a fair outtorn for his outlay.

This gilandāzi is an exeellent form of investment, as the capital spent on it returns a dividend of 40 to 50 per cent. in the first year; in some cases, it is said, it has been found to yield a profit of eent. per cent. If landlords even received only half the produce of the land irrigated by these works, they would get a very good return on their capital outlay. The ideal sule of the bhäoli system is that the produce should be divided half and half between the landlords and tenantz, but, as a matter of faet, such a divisien is very rare, and the landlords constantly take Tif the and often $\frac{10}{18}$ the of the produce. In exceptional cases, it is true, they may tike less than a half share of the produce, e.g., when waste land has been brought under eultivation, or, in special cases, when the cultivation requires unusual labour on the part of the tenant; but these cases are not frequent, and the ordinary prictice is for the landlord to take a little more than half.

The share of the produoe which the landlond receives is determined either by batai, i.e., the actual division of the crops on the
threshing floot, or by dänäbandi, i.e., appraisement of the crop before it is reaped. Under the batãi system, or the agorbatäi system, as it is called, because the landlord's men have to watoh (agornd) the crop carefally to prevent their masters being robbed, the grain is harvested by the cultivator and carried by him to the threshing floor, where it is divided between the landlord and tenant, after the payment of the allowances given to the harvesters and others.

Under the dinäbandi system the divisiontof the produce has passed into an estimate of its quantity or value before the crop is cut. The produce of each field in appraised before the harvest, and the ryot is allowed to take the whole away, being debited with the landlord's share or its value. When the orops are nearly ripe, the landlord, or his agent, and the oultivator repair to the field, accompanied by the patwārī or village acoountant, an a min or assessor, a jaribkash or measurer, a aàlis or arbitrator, a navisinda or writer, and the village headman. The measurer having measured the field with the local pole, tha arbitrator goes round it, and after a consultation with the asses. sor and the village officials, estimates the quantity of grain in the crop. If the tenant acoepts the estimate, the quantity is enterea in the patwäri's field-book (khasrä) and the matter is considered settled. If the tenant objects, or if the assessor and the arbitrator cannot agree, the fellow-tenants are called in as mediators; and if they fail to convince either party, a test crop-entting partäb takes place, the landlord selecting a portion of the beet part of the field, and the tenant an equal part of the worst part. The produce of both is reaped and threshed, and the grain having been weighed, the whole produce of the field is calculated from the amount weighed, and is entered in the field-book. The tenant is then at liberty to reap the erop and harvest it whenever it suits his convenience. The total share of the landlord, which is entered in a statement called behriz, is appraised aocording to the market value of the grain, and is paid by the tenant either in grain or money according to the agreement made between them.

There is no regular custom as to the method of realizing produse rents. It is not the case that one village has a permanent custo.n of always paying rent by the baläi system, and that

Dänãbande.

[^0]: *Eee Griersou's Notes on the District of Gaya, pp. 81-82.

[^1]: *As the naknhatras are calculated according to phases of the moon they ary slightly from Roglish dates, but the greatest variation is only five days.

[^2]: * See Food-grsin Supply and Famine Kelief in B.har and Bengal, by A. P. MacDouell, 1876.

